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Abstract
We study the dynamics of covariances in a chain of harmonic oscillators with
conservative noise in contact with two stochastic Langevin heat baths. The
noise amounts to random collisions between nearest-neighbour oscillators that
exchange their momenta. In a recent paper (Lepri et al 2009 J. Phys. A:
Math. Theor. 42 025001), we have studied the stationary state of this system
with fixed boundary conditions, finding analytical exact expressions for the
temperature profile and the heat current in the thermodynamic (continuum)
limit. In this paper, we extend the analysis to the evolution of the covariance
matrix and to generic boundary conditions. Our main purpose is to construct
a hydrodynamic description of the relaxation to the stationary state, starting
from the exact equations governing the evolution of the correlation matrix. We
identify and adiabatically eliminate the fast variables, arriving at a continuity
equation for the temperature profile T(y, t), complemented by an ordinary
equation that accounts for the evolution in the bulk. Altogether, we find that
the evolution of T(y, t) is the result of fractional diffusion.

PACS numbers: 05.60.−k, 05.70.Ln, 44.10.+i

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heat transport in lattices of nonlinear oscillators is a relevant test bed for understanding the
behaviour of systems steadily kept out of equilibrium. The importance of this physical setup is
further strengthened by the possibility of comparing theoretical predictions with experimental
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results, as indicated by the recent success in measuring heat conduction properties of individual
nanotubes [1].

On the theoretical side, the chain of harmonic oscillators maintained out of equilibrium
by means of stochastic heat reservoirs, is one of the few systems for which the nonequilibrium
invariant state has been obtained rigorously [2]. However, due to the lack of any phonon
scattering mechanism, its heat conductivity κ diverges linearly with the size of the chain.
Consequently, Fourier’s law of heat conduction JQ = −κ∇T , relating the heat flux JQ with
the imposed temperature gradient ∇T does not hold. As a matter of fact, the integrability
of the harmonic chain makes it impossible for the system to support a temperature gradient.
It was already recognized by Debye that the presence of nonlinearities in the dynamics is a
necessary condition for the occurrence of a normal transport, i.e. a finite heat conductivity in
the thermodynamic limit. However, years later Fermi, Pasta and Ulam found that nonlinear
dynamics does not necessarily induce a statistical behaviour [3].

In the last decade, numerical simulations and analytic arguments have contributed
to clarifying the role of nonlinearities in the thermodynamic limit [4–8]. In some
studies, anharmonicities have been introduced by means of self-consistent local thermostats
[6, 9, 10]. Further attempts to derive Fourier’s law in deterministic systems have been reported
(see review papers [11, 12] and references therein). However, no rigorous derivation exists
of the necessary and sufficient conditions for the validity of Fourier’s law. Moreover, there
are still a number of open questions concerning the steady state, such as the role of boundary
conditions (BC in the following), while the convergence towards the stationary state is even
less explored.

Stochastic models are rather useful in that they can effectively reproduce the evolution
of deterministic nonlinear systems, while allowing for analytic solutions. Bolsterli, Rich and
Visscher considered harmonic chains in which each oscillator is in contact with a stochastic
thermal reservoir [9]. Then, the stationary state is obtained assuming a self-consistent
condition, namely the energy current between the local reservoirs and the respective oscillator
is zero. Recently, it has been proved by Bonetto et al that this linear model leads to a Gaussian
invariant measure and the temperature profiles are linear [6]. A drawback of this model is
that, strictly speaking, energy is not conserved by the bulk dynamics (see also [13] where
energy current from the reservoirs becomes zero in the long time limit, and [10] for their
treatment in terms of nonequilibrium Green’s function formalism). Another model that can be
explicitly solved is the Kipnis–Marchioro–Presutti (KMP) lattice model, in which stochastic
collisions mix the energy of neighbouring particles, conserving the total energy, but not the
momentum [14]. This model satisfies Fourier’s law and a linear temperature profile is obtained.
Energy conserving stochastic noise has also been used in lattice model systems, as natural
generalizations of KMP and of the single exclusion process (SEP) [17].

Based on the KMP model, Basile et al have recently studied a harmonic chain in the
presence of random collisions among triples of nearest-neighbour oscillators [15]. This latter
process, which conserves both energy and momentum, amounts to a diffusion on the energy
shell. In this system, it is proven that the energy–current autocorrelation decays as t−1/2

and thereby heat conductivity diverges with the size of the system N, as κ ∼ N1/2 [15].
More recently, Jara et al have studied the relationship between anomalous heat transport
and fractional diffusive processes [16]. They find that in the infinite system, the dynamics
leading to anomalous transport is obtained from a Levy stable process that corresponds to a
spacetime scaling given by the fractional diffusive operator ∂t − ∇3/2, where ∇ is the gradient
operator.

In a recent paper [18], we have studied a harmonic chain with both energy- and momentum-
conserving noise (and fixed BC). The model, a slight variant of the one introduced in [15], is
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amenable to analytical calculations, as the evolution equations for the covariance matrix are
linear (see also [19]). Taking a suitable continuum limit, recalled in section 2.3, we obtained
a solution for the covariance matrix in the stationary state t → ∞. From this solution we
derived exact expressions for the temperature profile and the heat current, finding that the
heat conductivity diverges as in [15]. Remarkably, the temperature profile (equation (8) in
[18]) is parameter free, suggesting that it may represent a wider class of systems. To our
knowledge, this is the first example of an analytic expression for the temperature profile in a
system characterized by anomalous heat transport and confirms that a nonlinear shape persists
in the thermodynamic limit.

In this and in the companion paper [20], we extend the previous analysis to the
nonstationary case, obtaining a hydrodynamic equation ruling the relaxation of the covariance
matrix towards the stationary state. More precisely, here we analytically investigate the
continuum limit, by progressively eliminating the fast variables. The second part contains
a detailed numerical analysis of all aspects that are not (easily) accessible to an analytic
investigation, including the case of free BC, and the estimate of finite-size effects. At variance
with normal heat conduction, the role of BCs is very important in the anomalous case. For
instance, in disordered chains of linear oscillators, the same system may even behave as a
thermal superconductor or as an insulator, by simply switching from free to fixed BC [4]. In
the present context, we find that in the thermodynamic limit and given bath temperatures, fixed
and free BC give rise to the same scaling behaviour, but macroscopically different values of
the heat flux. Even more surprising, we find that the stationary value of the heat flux varies
the coupling strength with the heat baths only for free BC.

The numerical analysis [20] demonstrates that these effects are caused by boundary
layers, where the scaling behaviour of some observables changes with respect to the bulk.
This phenomenon, which is associated with strong deviations from local equilibrium, hinders
the development of an analytical solution in the general case. Nevertheless, for fixed BC,
we demonstrate that the boundary layers do not affect the relevant physical observables,
and an explicit solution can be obtained for the evolution of the temperature profile. Our
results, obtained for large but finite chains, are consistent with those derived directly in
the infinite-size limit [16]. This was not a priori granted in the presence of long-range
correlations.

This paper is organized as follows. In section 2, we define the stochastic model and
introduce the main notations. More precisely, in section 2.1, we introduce the covariance
matrix, by adopting a different definition with respect to [18], so as to be able to treat both free
and fixed BC. The corresponding ordinary differential equations are derived in sections 2.1
and 2.2, with reference to the bulk and boundaries, respectively. In section 2.3, we perform
a further change of variables to simplify the treatment of the continuum limit, discussed in
section 2.4. There, we define the smallness parameter, ε = 1/

√
N (N is the chain length)

and thereby map the discrete spatial indices i, and j of the correlation matrices onto two
continuous variables (continuum limit) x and y. Moreover, we introduce an Ansatz for the
scaling behaviour of the different variables, as suggested by the numerical analysis presented
in the companion paper [20]. The internal consistency of the resulting equations confirms
a posteriori the correctness of our initial choice. In section 3, we anticipate the main results
to allow the reader appreciating them without being distracted by the technical details. The
derivation of the partial differential equations and the elimination of the fast degrees of
freedom is illustrated in sections 4 and 5, with reference to the bulk and boundary dynamics,
respectively. The relaxation towards the stationary state is then discussed in section 6. The
numerical computation of the spectrum of the covariance evolution operator corroborates the
analytical results. Some concluding remarks are finally presented in section 7.
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2. Stochastic model

We consider a homogeneous chain of N harmonic oscillators of unit mass and frequency ω.
The first and Nth oscillators are coupled to Langevin heat baths at different temperatures. The
equations of motion of this system are

q̇n = pn

ṗn = ω2(qn+1 − 2qn + qn−1) + δn,1(ξ
+ − λq̇1) + δn,N (ξ− − λq̇N).

(1)

Here, pn and qn are the momentum and displacement (from its equilibrium position) of
the nth oscillator and ξ± are independent Wiener processes with zero mean and variance
2λkBT±, where kB is the Boltzmann constant and λ is the coupling constant. Additionally, the
deterministic dynamics is perturbed by random binary collisions between nearest-neighbour
oscillators occurring at a rate γ . These collisions are defined so that the total momentum and
energy are conserved. This type of stochastic noise is known in the literature as conservative
noise.

The phase-space probability density P(�q, �p, t) evolves according to the equation

∂P

∂t
= (L0 + Lcoll) P . (2)

The first term corresponds to the usual Liouville generator of the dynamics, acting on the
probability density as

L0P =
∑
i,j

(
aij

∂xjP

∂xi

+
dij

2

∂2P

∂xi∂xj

)
, (3)

with the 2N vector x = (q1, q2, . . . , qN , p1, p2, . . . , pN), and the 2N × 2N matrices a and d
are

a =
(

0 −1
ω2g λr

)
; d =

(
0 0
0 2λkBT (r + ηs)

)
, (4)

where T is the average temperature (T+ + T−)/2, η is the relative temperature difference
(η = (T+ − T )/T ), 0 and 1 are the null and unit N × N matrices,

rij = δi,j (δi,1 + δi,N ), sij = δi,j (δi,1 − δi,N ), (5)

and g is the negative of the discrete Laplacian

gij = 2δi,j − δi+1,j − δi,j+1. (6)

The stochastic collision generator is

LcollP = γ

N−1∑
j=1

[P(. . . , pj+1, pj , . . .) − P(. . . , pj , pj+1, . . .)]. (7)

Each term in the sum expresses the probability balance for each elementary process in which
the momenta of each pair j, j + 1 are exchanged with a rate γ .

In this paper, we consider either free or fixed boundary conditions and the choice adopted
will be explicitly stated wherever needed.

2.1. Covariance matrix

The main subject of our analysis is the evolution of the covariance matrix of this system,
namely the two-point correlation functions of the phase space variables. In order to develop a
formalism that is both able to describe the case of fixed and free BC, we consider the correlators
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of relative displacements and momentum, namely {�qi = qi − qi−1, pi}. More precisely, we
study the covariance matrix

c =
(

y z
z† v

)
, (8)

where the correlation matrices y, z and v of respective dimensions (N − 1) × (N − 1),

(N − 1) × N and N × N are defined as

yi,j = 〈�qi�qj 〉, zi,j = 〈�qipj 〉, vi,j = 〈pipj 〉 (9)

and 〈·〉 denotes the average over phase space probability distribution function P. Note that y
and v are symmetric by definition, while z has no definite symmetry.

In terms of the relative displacements, the boundary conditions are defined by imposing

�q1 = 0 and �qN+1 = 0 (10)

for free BC and

�q1 = q1 and �qN+1 = −qN (11)

for fixed BC.
Using {�qi} instead of {qi} is necessary since the average of qi is not well defined when

free BC are considered. This is at variance with [18], where we considered the correlators
of the variables {qi, pi}. However, one can recover the old formulation by noticing that there
exists a simple mapping with the correlators Ui,j = 〈qiqj 〉, Zi,j = 〈qipj 〉 and Vi,j = 〈pipj 〉,
studied in [18], namely

yi,j = Ui,j − Ui,j+1 − Ui+1,j + Ui+1,j+1, zi,j = Zi,j − Zi−1,j and vi,j = Vi,j . (12)

The evolution equations for c have two contributions: the dynamic contribution directly
obtained from the equations of motion (1), and the stochastic contribution that is evaluated
upon multiplying (7) by xixj and thereby integrating over phase space.

We say that a given correlator in c is in the bulk of the system if the index of the momentum
variable is in [2, N − 1] and the index of �q is in [3, N − 1] for free BC and in [2, N ] for
fixed BC. The evolution equations c are in the bulk

ẏi,j = zj,i − zj,i−1 + zi,j − zi,j−1,

żi,j = vi,j − vi−1,j + ω2(yi,j+1 − yi,j ) + γ (zi,j+1 + zi,j−1 − 2zi,j ), (13)

v̇i,j = ω2(zj+1,i − zj,i + zi+1,j − zi,j ) + γWi,j ,

where the N × N collision matrix W , corresponding to the contribution from the stochastic
noise, depends on the distance between the evaluated indices i and j and can be written in a
compact form as

Wij = δ̃i,j [δ̃i,j−1(δ̃i,Nvi+1,j + δ̃j,1vi,j−1) + δ̃i,j+1(δ̃i,1vi−1,j + δ̃j,Nvi,j+1)]

+ δi,j (δ̃i,Nvi+1,j+1 + δ̃j,1vi−1,j−1) − (2(δ̃i,j−1 + δ̃i,j+1 − δi,j )

− δi,1 − δi,N − δj,1 − δj,N + δi,1δj,1 + δi,Nδj,N )vi,j , (14)

where δi,j is the Kronecker delta function and δ̃i,j ≡ 1 − δi,j . Wij also holds for the boundary
terms, and since it deals with momentum variables only, it is independent of the specific BC.

2.2. Boundary conditions

As a consequence of the physical boundary conditions imposed on the oscillators of the chain
edges, the border terms of the covariance matrices follow a dynamics that is different from
(13). The BC affect the phase space variables �qi , according to (10) and (11), and pi, through
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the boundary terms in (14). Furthermore, the coupling between the oscillators at the edges
and the heat baths affects the evolution of their momentum (1). In this section, we content
ourselves with writing down the equations of motion of the border covariances corresponding
to the first column and last row of each matrix. The equations for the matrix elements in the
last column and first row can be obtained analogously. The latter are not a mirror image of the
former. Nevertheless, one can verify that to leading order in the continuum limit, they lead to
the same behaviour.

For fixed BC the equations of motion for the border matrix elements of the first matrix
column (index 1 for both phase space variables) are

ẏi,1 = δ̃i,N+1z1,i − δ̃i,1z1,i−1 + zi,1, (15)

żi,1 = δ̃i,N+1vi,1 − δ̃i,1vi−1,1 + ω2(yi,2 − yi,1) + γ (zi,2 − zi,1) − λzi,1, (16)

v̇i,1 = ω2(zi+1,1 − zi,1 + z2,i − z1,i ) − λ(1 + δi,1 + δi,N )vi,1 + δi,12λkBT+ + γWi,1, (17)

where 1 � i � N + 1 in (15), (16) and 1 � i � N in (17). For fixed BC the last matrix row
different from zero corresponds to the index N + 1 for �q variables and to the index N for p
variables. The corresponding equations of motion are

ẏN+1,j = −zj,N + δ̃j,N+1zN+1,j − δ̃j,1zN+1,j−1, (18)

żN+1,j = −vN,j + ω2(yN+1,j+1 − yN+1,j ) + γ (δ̃j,NzN+1,j+1 + δ̃j,1zN+1,j−1

− (δ̃j,N + δ̃j,1)zN+1,j ), (19)

v̇N,j = ω2(zN+1,j − zN,j + zj+1,N − zj,N ) − λ(1 + δj,1 + δj,N )vN,j + δj,N2λkBT− + γWN,j ,

(20)

where 1 � j � N + 1 in (18) and 1 � j � N in (19) and (20).
For free BC the first matrix column (different from zero) is index 2 for �q variables and

1 for p variables. Consequently, the equations of motion are

ẏi,2 = z2,i − z2,i−1 + zi,2 − zi,1, (21)

żi,1 = vi,1 − vi−1,1 + ω2yi,2 + γ (zi,2 − zi,1) − λzi,1, (22)

v̇i,1 = ω2(δ̃i,Nzi+1,1 − δ̃i,1zi,1 + z2,i ) − λ(1 + δi,1 + δi,N )vi,1 + δi,12λkBT+ + γWi,1, (23)

where 2 � i � N in (21), (22) and 1 � i � N in (23). For the border matrix elements of the
last row (index N for both �q and p variables), the equations of motion are

ẏN,j = zj,N − zj,N−1 + zN,j − zN,j−1, (24)

żN,j = vN,j − vN−1,j + ω2(δ̃j,NyN,j+1 − δ̃j,1yN,j ) − λ(δj,1 + δj,N )zN,j

+ γ (δ̃j,N zN,j+1 + δ̃j,1zN,j−1 − (δ̃j,1 + δ̃j,N )zN,j ), (25)

v̇N,j = ω2(−zN,j − zj,N + δ̃j,Nzj+1,N )− λ(1+ δj,1 + δj,N )vN,j + δj,N2λkBT− + γWN,j , (26)

where 2 � j � N in (24) and 1 � j � N in (25), (26).
The equations presented in this section (together with the equations for the border elements

of the first row and of the last column of the matrices) constitute the dynamic boundary
conditions of (13).
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2.3. Change of variables

We shall see in the following sections that certain combinations of covariances appear naturally
in the evolution equations. It is, therefore, convenient to introduce some of these combinations
as new variables. An important example of such combinations is

ψi,j = vi,j − ω2yi,j , (27)

which has a precise physical meaning: its diagonal elements ψi,i correspond to the local
balance between kinetic and potential energies. If our system satisfies the virial theorem, then
we should find that ψi,i = 0 for all i. As we will discuss in section 5.1, this is not always the
case. In the rest of this paper we will substitute y in favour of ψ .

In [18], we found that the stationary state solution of (13) obtained by taking all time
derivatives to zero, implies that the covariance matrix Z is antisymmetric. From (12) it is clear
that the covariance z has no definite symmetry, not even in the stationary state. Therefore, it
is pertinent, as we do in the following, to decompose z into its symmetric and antisymmetric
components z±:

zi,j = z+
i,j + z−

i,j , with z±
i,j = zi,j ± zj,i

2
. (28)

In these variables, the equations of motion (13) are

ψ̇i,j = ω2
[−4z+

i,j + z+
i,j+1 + z+

i+1,j + z+
i−1,j + z+

i,j−1 − z−
i,j+1 + z−

i+1,j − z−
i−1,j + z−

i,j−1

]
+ γWi,j ,

(29a)

2ż−
i,j = γ

[
z−
i,j+1 + z−

i+1,j + z−
i−1,j + z−

i,j−1 + z+
i,j+1 − z+

i+1,j − z+
i−1,j + z+

i,j−1 − 4z−
i,j

]
+ ψi+1,j − ψi,j+1 + vi,j+1 − vi+1,j − vi−1,j + vi,j−1, (29b)

2ż+
i,j = γ

[
z+
i,j+1 + z+

i+1,j + z+
i−1,j + z+

i,j−1 + z−
i,j+1 − z−

i+1,j − z−
i−1,j + z−

i,j−1 − 4z+
i,j

]
+ 2ψi,j − ψi+1,j − ψi,j+1 + vi,j+1 + vi+1,j − vi−1,j − vi,j−1, (29c)

v̇i,j = ω2
[−2z+

i,j + z+
i,j+1 + z+

i+1,j − z−
i,j+1 + z−

i+1,j

]
+ γWi,j . (29d)

Other useful combinations of covariances will be considered when needed.

2.4. Perturbative expansion and continuum limit

Our first goal is to transform the set of difference equations (29a)–(29d) into a set of partial
differential equations, by taking a continuum limit that is appropriate to our problem. We
do this by following a perturbative-like analysis and choose ε = 1/

√
N as a perturbation

parameter. In order to proceed we first need to attribute the right order (in powers of ε) to
the covariance matrix elements. In order to keep the presentation as simple as possible, we
proceed on the basis of our knowledge of the stationary solution [18] and of the numerical
solutions discussed in [20].

In the stationary state, yi,j and vi,j are O(ε), with the exception of the diagonal terms
that are O(1), being proportional to the mean potential and kinetic energy, respectively. On
the other hand, the combination in equation (27) is O(ε2), indicating that the system is locally
at equilibrium. Moreover, it can be shown that the fields z± are x-derivatives of Z, namely
z+ ∝ Zx and z− ∝ Zxx . In [18], we found that off-diagonal terms of Z are O(1), while along
the diagonal Z = 0 due to its antisymmetry. Since each differentiation wrt x increases the

7
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order by ε (see (32) below), z+ must be O(ε) and z− of O(ε2). Altogether,

ψi,j ≡ ε2δi,ji + ε2(1 − δi,j )�i,j ,

z+
i,j ≡ εδi,jS+

i + ε(1 − δi,j )Z+
i,j ,

z−
i,j ≡ ε2(1 − δi,j )Z−

i,j ,

vi,j ≡ δi,j Ti + ε(1 − δi,j )Vi,j .

(30)

These equations also fix the notation that we will use in the rest of the paper. Note that
in this notation, all the correlators appearing on the rhs of the above definitions, namely
,�,S+,Z+,Z−, T and V , are O(1). We refer the reader to [20], where we give numerical
support for the validity of (30). Furthermore, we have found in [20] that for fixed BC, the
off-diagonal elements of ψ scale as ε3 for λ = ω, and as in (30) for λ �= ω. In what follows we
will assume (30) and discuss the modifications for the resonant case λ = ω where appropriate.

The last step before proceeding to the derivation of the partial differential equations
consists in transforming the discrete indices of the correlators into two suitable continuous
variables. We do this by introducing the variable y for the diagonal direction and variable x
for the transversal direction as (see, e.g., figure 1 in [18])

x ≡ (i − j)ε; y ≡ (i + j)ε2 − 1

1 − |i − j |ε2
. (31)

The nonlinear definition of y is chosen so that its domain [−1, 1] is independent of x.
Nevertheless, in the limit N → ∞, the effects of the nonlinearities are localized at the
boundaries of the domain and thus do not complicate the study of the bulk dynamics.
Differential changes in these variables can be written as

x ′ = x + f ε; y ′ = (i + j)ε2 − 1 + sε2

1 − |i − j |ε2 − f ε2
, (32)

where the integer shift functions f (�i, �j) ≡ �i − �j and s(�i,�j) ≡ �i + �j

(f, s : Z
2 �→ Z) account for the displacements on the discrete variables along the x and

y directions, respectively.
Using this, the continuum limit of any covariance matrix element mi+�i,j+�j can be written

up to O(ε2) as

mi+�i,j+�j = m(x + f ε, y + ε2(fy + s)), for i � j, (33)

for the continuous correlator function m. Here and in what follows, we keep the same notation
for the continuous functions derived from the matrix variables (e.g. vi,j (t) −→ v(x, y, t),

etc). If we restrict to the matrix lower triangle, as we do in (33) and in the following, then in
the limit N → ∞ the variables (x, y) belong to the domain

D ≡ {(x, y)|x ∈ [0,∞); y ∈ [−1, 1]} . (34)

Note, for instance, that x = const corresponds to moving along the diagonal direction (x = 0
corresponding to the main diagonal). For more details we refer the reader to section 4.1
of [18].

3. Main results

In the next section we show that, after eliminating the fast degrees of motion, the bulk dynamics
reduces to the following two equations (the subscript denoting partial derivation):

Ż+ = ε2
(
γZ+

xx + 2Vy

)
, (35)

8
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V̇ = ε2
(
γVxx + 2ω2Z+

y

)
, (36)

together with the conditions on the boundary of the domain (34)

δD ≡ {x = 0} ∪ {y = ±1}.
On x = 0, we find that

Vx(0, y, t) = 0, (37)

Z+
x (0, y, t) = − 1

γ
Ty, (38)

Ṫ (y, t) = 2ε3ω2Z+
y (0, y, t). (39)

This last equation is accompanied by its BC, namely T (∓1, t) = T±. The peculiar
mathematical structure of the problem should be underlined: the boundary evolution of Z is
determined dynamically by the differential equations (38) and (39) which, in turn, determine
the temperature field T(y, t).

On y = ±1 the BC are particularly difficult because close to these boundaries the
expansions (30) are no longer valid. The numerical solution in [20] shows that a kind of
‘boundary layers’ (BL) exist, namely that at least some of the fields scale differently in the
regions of D lying within a distance O(ε) from y = ±1. In particular, in this region, ψ is of
order O(ε). Recalling that ψ is the difference between the kinetic and potential energy, which
away from the diagonal are O(ε), this implies that in the BL the relative difference between
potential and kinetic terms is of O(1), which means that the system is not in a local thermal
equilibrium.

The existence of a BL hinders us from finding an explicit exact solution in the general
case. This technical difficulty is irrelevant in two cases: (a) for fixed BC and (b) for free BC
at the ‘resonant’ value of the bath coupling constant, λ = ω. In case (a), the boundary layer
does not affect the relevant fields and, as we show in section 5, it is sufficient to impose

Z+(x,±1, t) = 0, V(x,±1, t) = 0. (40)

This allows us to find an explicit time-dependent solution. From a physical point of view, case
(b) corresponds to the only situation in which the coupling can be perfectly tuned to avoid an
impedance mismatch on the boundaries. Unfortunately, we were not able to find an explicit
solution in this case.

Inspection of the equations of motion reveals that the temperature field T is the slowest
variable (it evolves on a time scale O(ε−3)). Since Z+ and V relax on a time scale
O(ε−2) they can be adiabatically eliminated by setting their time derivative equal to zero in
equations (35) and (36). By further eliminating the field V , we obtain the fourth-order equation

γ 2Z+
xxxx − 4ω2Z+

yy = 0, (41)

that is formally equal to the equation solved in [18], the main difference being that here Z+

is time dependent. The dynamical equation is obtained by first determining the stationary
solution of (41) with the appropriate BC and then using (38) to express Z+ as a function of T
and replacing the result into (39). This is accomplished by considering the Fourier expansion

T (y, t) = Ts(y) +
∞∑

n=1

Tn(t) sin

[
nπ

2
(y + 1)

]
, (42)

with Ts being the stationary solution of T, as given by formulae (18) and (19) of [18]. In
section 6 we show that the coefficients Tn(t) obey the linear equation (74). The associated

9
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eigenvalues, that must be computed numerically as the problem is not exactly diagonal,
uniquely determine the relaxation to the steady state for any assigned initial condition. They are
found to be proportional to −(k/N)3/2 (for k being a positive integer labelling the eigenvalues).
This is reminiscent of the spectrum of the eigenvalues of the fractional Laplacian ∇3/2, thus
suggesting that the evolution of the temperature field is ruled by some underlying fractional
diffusion equation on hydrodynamic scales [16, 21].

4. Dynamical equations

We first focus on the dynamics in the ‘bulk’ of system, namely the interior of D. In appendix A
we derive the set of coupled partial differential equations (A.3a)–(A.3d), for the covariances
ψ, z−, z+ and v. Furthermore, using (30) the equations with their explicit order in ε are
rewritten as

�̇ = 2ε
(
2ω2Z−

x + ω2Z+
xx + γVxx

)
+ 4ε2ω2yZ−

y , (43a)

Ż− = ε�x + ε2
(
γZ−

xx + y�y

)
, (43b)

Ż+ = ε2
(
γZ+

xx + 2Vy

) − ε3
(

1
2�xx + �y

)
, (43c)

V̇ = ε2
(
2ω2Z−

x + ω2Z+
xx + 2γVxx + 2ω2Z+

y

)
+ 2ε3ω2yZ−

y . (43d)

The four variables can be split into a pair of fast (� and Z−) and slow (Z+ and V)
ones, which evolve on time scales of orders ε−1 and ε−2, respectively. Upon substituting the
x-derivative of (43a) into the time derivative of (43b), we find

Z̈− − 4ε2ω2Z−
xx − 2ε2

(
ω2Z+

xxx + γVxxx

) = ε2γ Ż−
xx + 8ε3ω2yZ−

xy + 2ε3y
(
ω2Z+

xxy + Vxxxy

)
,

(44)

where we have retained only terms up to order ε3. The terms on the rhs do not affect the final
solution but must be taken into account to justify the adiabatic elimination. In fact, scaling the
time by ε, we see that they are o(ε3) and could, in principle, be neglected. However, if we do
so, we are left with a non-dissipative wave equation (with source terms) for Z−, that cannot
account for the convergence towards the steady state. Therefore, to study the evolution of the
fast variables, we are obliged to include the higher order terms (losses are actually provided
by the Ż−

xx term, the other being perturbations of the source term). After this remark, we are
authorized to adiabatically eliminate Z− and �. From (43a), (43b) we obtain to leading order

Z−
x = −1

2
Z+

xx +
γ

2ω2
Vxx, (45a)

�x = 0. (45b)

Note that � is a constant moving away from the diagonal. We now turn our attention to
the slow variables and substitute the above two equations into (43c), (43d). To leading order,
we finally obtain (35) and (36).

At this point, it is useful to illustrate some features of (35) and (36). The symmetry of
these equations suggests to introduce the new variables Q(±) = ωZ+ ±V that allow decoupling
the system of equations into

Q̇(±) = ε2
(
γQ(±)

xx ± 2ωQ(±)
y

)
. (46)

The first term on the rhs describes a transversal diffusion process characterized by the diffusion
constant ε2γ ; the second term accounts for a longitudinal right/left sound-wave propagation,

10
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depending on whether Q−/Q+ is considered. Leaving aside for the moment the issue of BC,
by absorbing the order ε2 in the time variable, we look for solutions of the form

Q+(x, y, t) = P(x, t) cos Kyy + Q(x, t) sin Kyy; (47)

we consider only Q+ as the equation for Q− leads to the same dispersion relation. By
substituting this in (46) and separating the independent terms, we obtain

Ṗ = γPxx + 2ωKyQ, (48)

Q̇ = γQxx − 2ωKyP. (49)

By then assuming the following form of the solution:

P(x, t) = a(t) cos Kxx + b(t) sin Kxx, (50)

Q(x, t) = c(t) cos Kxx + d(t) sin Kxx, (51)

we find that a(t) and c(t) satisfy a system of two ordinary differential equations:

ȧ = −γK2
x a − 2ωKyc, (52)

ċ = −γK2
x c + 2ωKya (53)

(b and d do not add any information as they satisfy the same set of equations). Looking for
solutions of the form a(t) = ã exp(μt), c(t) = c̃ exp(μt), the resulting eigenvalue equation
yields two degenerate branches for the dispersion relations

μ = −γK2
x ± 2ωiKy, (54)

where i denotes the imaginary unit.
Taking μ = 0, we recover the eigenvalue of the stationary state [18]. Most importantly, the

real part of μ is negative, thus ensuring the stability of the stationary state. By reintroducing
the ε2 factor in the time units, we can thus conclude that modes characterized by a Kx of
O(1) relax on a time scale of order ε−2. As discussed in [20], these are the modes that mostly
contribute to the relevant nonzero off-diagonal correlations. However, Kx can, by construction,
be as small as ε−1. As a result the slowest relaxation times that one can observe are of the
order of N2. This is indeed confirmed by the numerical calculation of the spectrum of the
evolution operator [20].

5. Boundary conditions

A complete solution of the dynamical problem requires solving the set of partial differential
equations (43a)–(43d) on the whole domain D (34), including its boundary at all times. In
a general context, the difficulty of obtaining a full solution depends on the constraints along
δD. If they amount to algebraic conditions or if the boundary dynamics is faster than the
bulk dynamics, then one deals with the standard type of static BC. In the opposite case, it is
the bulk dynamics that can be adiabatically eliminated and the relevant (long-term) evolution
would be controlled by what happens along the boundaries.

In the first section, we study the dynamics of the covariance elements close to the diagonal
and derive a differential equation describing the evolution of the temperature profile. Later,
in section 5.2, we study how the physical BC determine the dynamics of the correlators along
the boundaries y = ±1.

11
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5.1. Boundary conditions along x = 0

The BC along the diagonal are not connected with the physical BC of the chain, but rather
with the symmetry of the various matrices. In appendix B, we derive the differential
equations describing the evolution of the covariances at x = 0 (B.3a)–(B.3c) and (B.5a)–
(B.5d). As the diagonal terms  and S+ appear only as differences with their respective
off-diagonal counterparts, it is convenient to introduce δ� = � −  and εδZ+(y, t) =
Z+(0, y, t) − S+(y, t), where we benefit of the numerical investigations to anticipate that the
latter difference is of higher order than the single addenda2.

By introducing δ� and δZ+ and using (30), we obtain the following set of partial
differential equations describing the evolution at x = 0:

˙δ� = −2ω2
(
3δZ+ + Z− + 2Z+

x

)
+ 2γVx + ε

(−4ω2yZ+
y + γKV

)
, (55a)

�̇ = 2ω2(Z− − δZ+
) + 2γVx + ε

(
2ω2(Z+

xx + 2Z−
x

)
+ γKV

)
, (55b)

Ż− = δ�

2
− γZ− + Ty + ε(�x − Vy), (55c)

˙δZ+ = 3

2
δ� − γ

(
3δZ+ + 2Z+

x

)
+ Ty + ε

(
�x − 2γyZ+

y − Vy

)
, (55d)

Ż+ = ε

(
1

2
δ� − γ δZ+ + Ty

)
+ ε2

(
Vy + γZ+

xx

)
, (55e)

V̇ = ε(ω2(Z− − δZ+) + 2γVx) + ε2(ω2(Z+
xx + 2Z−

x + 2Z+
y

)
+ γKV

)
, (55f )

Ṫ = 2ε2ω2(δZ+ + Z− + Z+
x

)
+ ε3ω2(Z+

xx + 2Z−
x + 2

(
y + 1

)
Z+

y

)
, (55g)

where we have considered the first two leading contributions to the evolution of each variable
and, for the sake of compactness, we have introduced

KV = 3Vxx + 2yVy. (56)

Like in the bulk, the variables evolve over manifestly different time scales, and the temperature
field T is the slowest one. Therefore, we proceed by adiabatically eliminating the other
variables, starting from the fastest ones. By setting the first three time derivatives equal to
zero and considering only the leading terms, equations (55a), (55b) and (55c) lead to

δ� = −
(

γZ+
x +

γ 2

ω2
Vx + 2Ty

)
, (57a)

Z− = −1

2

( γ

ω2
Vx + Z+

x

)
, (57b)

δZ+ = 1

2

( γ

ω2
Vx − Z+

x

)
. (57c)

Moreover, the stationary solution of (55d) yields

γZ+
x +

3γ 2

2ω2
Vx + Ty = 0. (58)

By now inserting (57a) and (57c) into (55e), and setting the time derivative Ż+ equal to zero,
we obtain (37). This equation has an obvious meaning: V is symmetric by definition across
the diagonal, so that we naturally expect V to be maximal for x = 0.

2 As a matter of fact, assigning to δZ+ the same scaling as its addenda leads to unphysical super fast evolution.
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Furthermore, by using (37) in (58), we obtain the second relevant constraint (38). From
(57b) and (57c), one can easily find that Z− = δZ+. By then referring back to (57a), (57b)
and (57c), and using constraints (37) and (38), we obtain

δZ+ = Z− = 1

2γ
Ty, δ� = −Ty. (59)

Altogether, once the five conditions contained in (37), (38) and (59) are satisfied, it turns out
that the derivatives of all seven boundary variables (55a)–(55g) are equal to zero to leading
order. In particular, we see that the variable � remains undetermined, but this is not a
problem, as it is of higher order in ε and does not contribute to the leading-order evolution of
the physically relevant variables. Additionally, with the exception of V , all the variables are
expressed as a function of the temperature profile T, whose evolution must be determined if
we want to find a closed solution.

It turns out that the leading contribution of O(ε2) to Ṫ is zero. Therefore, it is necessary
to go one order further in the perturbative analysis. This can be easily done by noting that
the leading contribution to Ṫ is equal to that of ̇ = �̇ − ˙δ� (see (B.3a)). Subtracting (55b)
from (55a) and setting the time derivatives equal to zero we find that, up to O(ε2),

2ω2
(
δZ+ + Z− + Z+

x

) = −εω2
(
Z+

xx + 2Z−
x + 2yZ+

y

)
. (60)

By inserting this into (55g) and retaining terms up to O(ε3), we obtain equation (39). By
recalling that Z+

y is proportional to the divergence of the heat flux along the diagonal, we
recognize that (39) is nothing but the continuity equation for the energy and could have been
derived simply on the basis of physical arguments. However, the relaxation of the temperature
profile towards the stationary state occurs on a time scale that is O(ε−3), i.e., for t ∼ N3/2. As
a consequence, we can conclude that the bulk dynamics is faster than that occurring along the
diagonal and can, thereby, be adiabatically eliminated as anticipated in section 3.

Finally, in order to complete the treatment, we must complement (39) with its physical
BC, as it is a (one-dimensional) partial differential equation. Without the need of a formal
treatment, it is easily understood that these BC are simply T (±1, t) = T∓. As a matter of
fact, the relaxation on the boundaries occurs on a finite time scale (≈1/λ), i.e. it is basically
instantaneous with respect to the above-mentioned time scales.

5.2. Boundary conditions along y = ±1

In this section we analyse the conditions that the physical boundary conditions, either fixed
or free, impose on the covariances. At the chain edges, where the system is directly coupled
to the heat baths stochastic evolution, the dynamics is different from that in the bulk: on the
one hand, the deterministic restoring force is not counterbalanced by the boundary and on
the other hand, the stochastic collision for the edge oscillators is also a ‘one-sided’ process.
Consequently, we introduce new auxiliary variables to distinguish the boundary dynamics
from its bulk counterpart. More precisely, we define φi,1 ≡ ψi,1, ζ

±
i,1 ≡ z±

i,1 and νi,1 ≡ vi,1.
In appendix C we derive the partial differential equations describing the dynamics of the

covariance at y = −1 for fixed and free BC. However, in this case we are not entitled to use
(30) in order to assign the correct order in ε of the covariance variables. As we have discussed
in section 3, there exist a boundary layer, namely a region around y = ±1 of size ε−1, where
the scaling of the covariance matrix on ε differs from (30). This BL has been further studied
numerically in [20]. It is important to note that if we insist using (30) then mathematical
consistency requires that the order of, e.g., ψ is O(ε) and not O(ε2), which is also what we
numerically observe in [20]. However, (30) cannot differentiate the scalings in the BL from
those in the bulk. Consequently, in this section we do not use the expansions (30) and limit
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ourselves to extract some physical information from the leading contribution determined only
by the differential structure of the equations. First we focus on fixed BC.

For fixed BC we end up with four equations for the bulk variables and four equations for
the boundary variables (C.3a)–(C.3h). Since all equations evolve on time scales of O(1), they
can be adiabatically eliminated from the bulk dynamics, which is at least O(ε). By taking all
time derivatives to zero and solving the resulting set of relations, we find that in the stationary
state all boundary variables coincide with the respective bulk counterparts

ζ + = z+, ζ− = z−, ν = v and φ = ψ, (61)

and that

v(x,−1, t) = 0, (62)

z+(x,−1, t) = −z−(x,−1, t). (63)

It is interesting to point out that these relations are independent of the parameters of the system
and that (61) imply that the bulk variables are continuous at the boundaries. Recalling that in
(63) z− is of higher order than its symmetric counterpart z+, we do obtain (40). It is interesting
to note that the indetermination of ψ(x,−1) and z−(x,−1), on which the effects of the BL
are mostly observed, does not affect the leading order dynamical solution of the physically
relevant fields. Therefore, for fixed BC, the existence of a BL does not impede us from using
the boundary relations (40) and determining the evolution of v and z+.

We now turn our attention to free BC. As seen in appendix C.2, in this case, only
two auxiliary variables along the boundaries are necessary, ζi,1 ≡ zi,1, corresponding to the
non symmetrizable term, and νi,1 ≡ vi,1. From (C.5a)–(C.5d) we find that when the three
conditions

ν = v, ζ̃ = z+ and z− = 0 (64)

are satisfied, the four time derivatives are equal to zero (to leading order), thus satisfying the
stationary state solution. By using these relations in (C.5e)–(C.5f ), we obtain the relevant
mathematical conditions

ψ(x,−1, t) = v(x,−1, t) − λz+(x,−1, t), (65)

ω2z+(x,−1, t) = λv(x,−1, t). (66)

There are two main differences between (62), (63) and the equations above: first, (65), (66)
depend on the variable ψ , which, as we have discussed, is the variable whose behaviour is
most affected by the BL. Second and more important, the free BC relations now depend on
the parameters λ and ω.

By combining (65) and (66), we find that

(ω2 − λ2)z+(x,−1, t) = λψ(x,−1, t). (67)

If ω = λ, then ψ(x,−1) = 0 (or at least O(ε2)), consistently with our expectations from
the bulk dynamics. In this resonant case the boundary condition reduces to ωZ+(x,−1, t) =
V(x,−1, t). Though simple, we have not found a way to derive an explicit solution of the
bulk equation which satisfies this constraint.

In the non-resonant regime ω2 �= λ2, (67) implies that z+ and ψ are of the same order
along the boundary. The numerical studies presented in [20] confirm this prediction, but show
also that this is because ψ is of O(ε). Such an observation is seemingly inconsistent with
the bulk analysis which predicts ψ to be of higher order. As said, the only way to solve the
paradox is by invoking the presence of a BL connecting the two different scaling regimes.
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Summarizing this section, the BC for y = ±1 reveal a crucial difference between fixed
BC and free BC. In the former case they are independent of parameters of the system, which in
turn imply that the asymptotic profile as well as the leading term of the heat flux is universal.
In the latter case both quantities depend on the coupling strength with the heat baths λ. In this
very atypical situation the contact with the baths may lead to measurable macroscopic effects.
Note, in particular, that the heat flux for a system with anomalous thermal conductivity, like
the one that concerns us, in general may depend on the type of boundary conditions, even in
the infinite volume limit.

6. Dynamics of the temperature field

The evolution of the temperature profile is determined by (39), subjected to conditions (37)
and (38). Since the temperature field evolves on a slower time scale, the bulk dynamics can be
adiabatically eliminated. Therefore, it suffices to solve (41) for Z+ and plug its solution into
(39). As discussed above, an explicit calculation is feasible only for fixed BC, where the first
of conditions (40) implies that we can, following [18], expand the time-dependent solution of
Z+ as

Z+(x, y, t) =
∑

n

Bn(x, t) sin

[
nπ

2
(y + 1)

]
. (68)

The Fourier coefficients satisfy the ordinary differential equation

∂4Bn

∂x4
= −

(
nπω

γ

)2

Bn, (69)

whose explicit solution yields

Bn(x, t) = An(t) exp(−αnx) sin(αnx) + A′
n(t) exp(−αnx) cos(αnx), (70)

where αn ≡ √
nπω/2γ and we have discarded the components which diverge for x → ∞. By

differentiating the equilibrium solution of (35) with respect to x, we realize that the condition
(37) is equivalent to Z+

xxx(0, y, t) = 0, which in turn implies that An = −A′
n.

If one is interested only in the stationary solution, equation (39) implies that Z+(0, y) =
constant, namely that the heat flux is constant along the chain. This condition transforms
itself into distinct equations for the coefficients {An}, which can therefore be determined
(apart from a multiplicative factor). Afterwards, with the help of (38) we can determine
Ts(y). The unknown multiplicative and additive factors are eventually removed by imposing
Ts(∓1) = T±. We do not report these calculations as they would closely follow what already
reported in [18].

Here, we wish to solve the dynamical problem, particularly for the temperature field T(y,
t). Let us consider its Fourier expansion (42) where we have only included the terms that are
appropriate for fixed BC. To write down closed equations for the coefficients Tn, we must face
the problem that the two sides of equation (39) are expanded in a different set of functions,
namely sines and cosines, respectively, and the problem is therefore not diagonal. By using
vector notations with an obvious meaning of the symbols, we obtain from (38) and (39)

A = 1

2γ
DRT (71)

Ṫ = 2ε3ω2RA, (72)

where

Rn,k =
{

2k2/(k2 − n2) for k + n odd
0 otherwise

(73)
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Figure 1. Spectrum {λ�} of the linear equation (74). The eigenvalues are expressed in ε3ω2/γ

time units. The straight line corresponds to a power law with a rate 3/2.

and Dn,m = δnm/αn. We can thus write a closed equation for T ,

Ṫ = ε3ω2

γ
RDRT . (74)

A numerical evaluation reveals that RDR is almost diagonal. In fact, the eigenvectors
are very close to Fourier sine-modes [20]. In figure 1, we report the eigenvalues in ascending
order, versus the index � that is equal (within a proportionality factor) to the corresponding
wave number. The data align almost perfectly along a straight line (in log–log scales) that
corresponds to a scaling with a power 3/2. The deviations observed at small wavenumbers are
not due to the truncation of the operator RDR; they express the fact that RDR is intrinsically
defined on a finite domain. In [20], we show that the numerical solution of the entire dynamical
operator (without any approximation) confirms our analytical predictions.

Altogether, the spacetime scaling of (74) indicates that the evolution of the temperature
field T(y, t) is, on the considered time-scales, ruled by a diffusion equation with a fractional
Laplacian ∇3/2. Recently, this has been shown to be the case for a similar model system [16],
directly in the infinite-N limit (i.e. without including the effect of the boundary conditions).

7. Discussion and conclusions

We have presented a detailed description of the relaxation towards the nonequilibrium steady
state in a model of harmonic oscillators with conservative noise. To our knowledge, this is
an almost unique instance where relaxation phenomena can be studied in great detail in a
realistic setup. By implementing the continuum-limit ideas previously introduced in [18] we
have obtained a set of partial differential equations describing the evolution of the covariance
matrix. In the bulk, the velocity–velocity and the symmetric component of the velocity–
position correlations are the relevant (slow) variables: they appear to evolve on a time scale
of order 1/ε2 = N . This means that in the bulk, relaxation phenomena are mostly controlled
by the propagation of sound waves.

Along the boundaries, the evolution of the relevant two-point correlators can be explicitly
determined to the lowest order in ε. Again, these correlators evolve on different time scales,
the temperature field being the slowest one (its dynamical equation evolves on time scales
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t ∼ N3/2). By adiabatically eliminating the fast variables, we find that T(y, t) satisfies an
energy continuity equation, where the expression for the current can be obtained from the
stationary solution of the bulk equation. Altogether, the temperature field T(y, t) appears to
satisfy a diffusion equation with a fractional Laplacian ∇3/2. However, the relationship with
fractional Brownian motion should be further explored. In particular, it is not yet clear as to
what extent the temperature profile can be obtained from the solution of the fractional equation
in a finite domain.

The case of free BC remains open in view of the difficulties arising along the boundaries,
where the mathematical conditions depend explicitly on system parameters such as ω and λ.
This is not only the indication of a lack of ‘universality’ but implies also that some variables
(namely ψ) must scale differently in the bulk and along the boundaries. As a result, boundary
layers are expected to arise (and this is confirmed by the numerical analysis carried out in
the companion paper [20]) which would require a separate analysis. This is one of the open
problems that will be worth investigating in the future, especially in the perspective that a
similar scenario might hold in generic nonlinear deterministic systems. Only in the resonant
case ω2 = λ2, boundary layers do not exist. However, even in this limit, the mathematical
conditions holding on the boundaries are sufficiently complicate to prevent the derivation of
explicit expressions (at least, to the best of our knowledge).

All of our analysis has been restricted to two-point correlators. The main reason is that
the dynamical equations are exactly closed onto themselves, so that there is no need to invoke
higher order correlators. Moreover, this analysis allows determining exact expressions for the
most relevant variables such as the heat flux and the temperature profile. However, one should
not forget that the scaling behaviour of heat conductivity in this stochastic model (κ � N1/2)
differs from that of generic nonlinear systems, where κ � N1/3. Is this an indication that a
faithful description of such systems needs including higher-order correlators? More modestly,
it would be already interesting to check to what extent a Gaussian approximation of the
invariant measure based on the knowledge of two-point correlators can accurately describe
other variables such as, e.g., energy fluctuations.
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Appendix A. Derivation of the differential equations: bulk dynamics

In this appendix we derive the set of partial differential equations describing the dynamics
of the covariance matrix elements in the bulk of the system, namely for covariances mi,j for
which

(i) the index of the momentum variable is in [2, N − 1],
(ii) the index of �q is in [3, N − 1] for free BC and in [2, N ] for fixed BC, and

(iii) |i − j | > 1.

In this situation the stochastic collision matrix is simply

Wij = vi+1,j + vi,j−1 + vi−1,j + vi,j+1 − 4vi,j . (A.1)
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In the continuum limit, discrete shifts of the indices i and j yield infinitesimal changes of
the field variables x and y and by using (33), the set of difference equations (29a)–(29d) lead
to a set of continuous equation given explicitly by

ψ̇(x, y) = ω2[−4z+(x, y) + z+(x − ε, y − ε2(y − 1)) + z+(x + ε, y + ε2(y + 1))

+ z+(x − ε, y − ε2(y + 1)) + z+(x + ε, y + ε2(y − 1)) − z−(x − ε, y − ε2(y − 1))

+ z−(x + ε, y + ε2(y + 1)) − z−(x − ε, y − ε2(y + 1)) + z−(x + ε, y + ε2(y − 1))]

+ γ [v(x + ε, y + ε2(y + 1)) + v(x − ε, y − ε2(y − 1)) + v(x − ε, y − ε2(y + 1))

+ v(x + ε, y + ε2(y − 1)) − 4v(x, y)], (A.2a)

2ż−(x, y) = γ [−4z−(x, y) + z−(x − ε, y − ε2(y − 1)) + z−(x + ε, y + ε2(y + 1))

+ z−(x − ε, y − ε2(y + 1)) + z−(x + ε, y + ε2(y − 1)) + z+(x − ε, y − ε2(y − 1))

− z+(x + ε, y + ε2(y + 1))− z+(x − ε, y − ε2(y + 1)) + z+(x + ε, y + ε2(y − 1))]

+ ψ(x + ε, y + ε2(y + 1)) − ψ(x − ε, y − ε2(y − 1)) + v(x − ε, y − ε2(y − 1))

− v(x + ε, y + ε2(y + 1)) − v(x − ε, y − ε2(y + 1)) + v(x + ε, y + ε2(y − 1)),

(A.2b)

2ż+(x, y) = γ [−4z+(x, y) + z+(x − ε, y − ε2(y − 1)) + z+(x + ε, y + ε2(y + 1))

+ z+(x − ε, y − ε2(y + 1)) + z+(x + ε, y + ε2(y − 1)) + z−(x − ε, y − ε2(y − 1))

− z−(x + ε, y + ε2(y + 1))− z−(x − ε, y − ε2(y + 1)) + z−(x + ε, y + ε2(y − 1))]

+ 2ψ(x, y) − ψ(x + ε, y + ε2(y + 1)) − ψ(x − ε, y − ε2(y − 1))

+ v(x − ε, y − ε2(y − 1)) + v(x + ε, y + ε2(y + 1))

− v(x − ε, y − ε2(y + 1)) − v(x + ε, y + ε2(y − 1)), (A.2c)

v̇(x, y) = ω2[−2z+(x, y) + z+(x − ε, y − ε2(y − 1)) + z+(x + ε, y + ε2(y + 1))

− z−(x − ε, y − ε2(y − 1)) + z−(x + ε, y + ε2(y + 1))] + γ [v(x + ε, y + ε2(y + 1))

+ v(x − ε, y − ε2(y − 1)) + v(x − ε, y − ε2(y + 1)) + v(x + ε, y + ε2(y − 1))

− 4v(x, y)]. (A.2d)

Finally, the straightforward differentiation in the continuous coordinates x and y, up
to O(ε2), lead to a set of partial differential equations for the time evolution of these four
correlators:

ψ̇ = 4εω2z−
x + 2ε2

(
ω2

(
z+
xx + 2yz−

y

)
+ γ vxx

)
, (A.3a)

ż− = εψx + ε2
(
γ z−

xx + yψy

)
, (A.3b)

ż+ = ε2
(− 1

2ψxx + γ z+
xx − ψy + 2vy

)
, (A.3c)

v̇ = 2εω2z−
x + ε2

(
ω2

(
z+
xx + 2yz−

y + 2z+
y

)
+ 2γ vxx

)
. (A.3d)

Appendix B. Derivation of the differential equations: x = 0

In this appendix, we derive a set of partial differential equations for the evolution of the diagonal
covariances. The dynamics in the boundary {x = 0} is different from the bulk dynamics due
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to the stochastic collisions and is not related to the physical boundary conditions concerning
the coupling with the heat baths.

The dynamics along this boundary are obtained by considering the difference equations
(29a)–(29d) along the diagonal (i = j ), and along the the sub-diagonal (i − j = 1). Along
the diagonal, the difference equations become

̇i = 2ω2
(−2s+

i,i + z+
i+1,i + z+

i,i−1 + z−
i+1,i + z−

i,i−1

)
+ γ (Ti−1 + Ti+1 − 2Ti), (B.1a)

ṡ+
i = γ

(−2s+
i + z+

i+1,i + z+
i,i−1 − z−

i+1,i + z−
i,i−1

)
+ (i − ψi+1,i + vi+1,i − vi,i−1), (B.1b)

Ṫi = 2ω2
(−s+

i + z+
i+1,i + z−

i+1,i

)
+ γ (Ti−1 + Ti+1 − 2Ti). (B.1c)

The continuum limit rule (33) for the diagonal on sub-diagonal matrix elements can be
written as

mi+�i,i+�j = m(f ε, y + ε2(fy + s)), (B.2)

with the shift functions f and s defined as before. By using this rule and differentiating the
resulting continuous equations, we obtain up to O(ε2)

̇ = 4ω2
(
z+ − s+ + z−)

+ 4εω2
(
z+
x + z−

x

)
+ 2ε2ω2

(
z+
xx + z−

xx + 2y
(
z+
y + z−

y

))
, (B.3a)

ṡ+ =  − ψ + 2γ (z+ − s+) + ε
(−ψx + 2γ z+

x

)
+ ε2(− 1

2ψxx + γ z+
xx − (y + 1)ψy + 2γ

(
yz+

y − z−
y

)
+ 2vy

)
, (B.3b)

Ṫ = 2ω2(z+ − s+ + z−) + 2εω2(z+
x + z−

x

)
+ ε2ω2(z+

xx + z−
xx + 2(y + 1)

(
z+
y + z−

y

))
. (B.3c)

Analogously, on the lower diagonal (i − j = 1), the difference equations become

ψ̇i,i−1 = ω2
(−4z+

i,i−1 + s+
i + z+

i+1,i−1 + s+
i−1 + z+

i,i−2 + z−
i+1,i−1 + z−

i,i−2

)
+ γ (vi+1,i−1 + vi,i−2 − 2vi,i−1), (B.4a)

2ż−
i,i−1 = γ

(−4z−
i,i−1 + z−

i+1,i−1 + z−
i,i−2 + s+

i − z+
i+1,i−1 − s+

i−1,i−1 + z+
i,i−2

)
+ ψi+1,i−1 − i + Ti − vi+1,i−1 − Ti−1 + vi,i−2, (B.4b)

2ż+
i,i−1 = γ

(−4z+
i,i−1 + s+

i + z+
i+1,i−1 + s+

i−1 + z+
i,i−2 − z−

i+1,i−1 + z−
i,i−2

)
+ 2ψi,i−1 − ψi+1,i−1 − i + Ti + vi+1,i−1 − Ti−1 − vi,i−2, (B.4c)

v̇i,i−1 = ω2
(−2z+

i,i−1 + s+
i + z+

i+1,i−1 + z−
i+1,i−1

)
+ γ (vi+1,i−1 + vi,i−2 − 2vi,i−1), (B.4d)

and by using (B.2) and keeping differential terms up to O(ε2), we arrive at

ψ̇ = 2ω2(−z+ + s+ + z−) + 2ε
(
2ω2z−

x + γ vx

)
+ ε2

(
2ω2

(
z+
xx + 2z−

xx + z+
y − s+

y

+ (2y − 1)z−
y

)
+ γ (3vxx + 2yvy)

)
, (B.5a)

ż− = 1
2 (ψ − ) − γ z− + εψx + ε2

(
ψxx + yψy − vy + Ty + γ

(
z−
xx − z+

y + s+
y + z−

y

))
, (B.5b)

ż+ = 1
2 (ψ − )− γ (z+ − s+) + ε2(− 1

2ψxx − ψy + vy + Ty + γ
(
z+
xx + z+

y − s+
y − z−

y

))
, (B.5c)

v̇ = ω2(−z+ + s+ + z−) + 2ε
(
ω2z−

x + γ vx

)
+ ε2

(
ω2

(
z+
xx + 2z−

xx + 2z+
y + 2yz−

y

)
+ γ

(
3vxx + 2yvy

))
. (B.5d)

The set of partial differential equations (B.3a)–(B.3c) and (B.5a)–(B.5d) describe the
dynamics of the covariance on the line x = 0.
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Appendix C. Derivation of the differential equations: y = ±1

Along the boundaries, where the system is coupled with the heat baths, the dynamics is different
from that in the bulk not only because of the coupling with the bath itself but also because the
deterministic force felt by the edge oscillators feel from the bulk is not counterbalanced and,
moreover, the stochastic collision at the edges is a ‘one-sided’ process. Clearly, the dynamics
depend on whether the BC are free or fixed.

In this section we derive the covariance dynamic equations at the boundaries y = ±1.
These boundaries correspond, on the original matrix, to the matrix elements of the first and
last rows and columns. Restricted to the semi-infinite plane x > 0, i.e., to the domain (34),
y = −1 corresponds to the first matrix column, while y = 1 corresponds to the last matrix
row. Here we specialize on the boundary y = −1. The BC at y = 1, that can be obtained
analogously, lead to the same information that is extracted from the BC at y = −1.

C.1. Fixed boundary conditions: y = −1

We recall that fixed BC are defined by the relations �q1 = q1 and �qN+1 = −qN . Our starting
point is transforming the set of difference equations (15)–(17) into a set on the variables �, z±

and v. Note, however, that the domain of �qi , which is i ∈ [1, N + 1], is different from the
domain of pi, i ∈ [1, N]. As a consequence, the terms zN+1,j are nonsymmetrizable.

In what follows, we restrict to i ∈ [3, N − 1], where all terms are symmetrizable and all
covariances are ‘far enough’ from the diagonal. By finally denoting φi,1 ≡ ψi,1, ζ

±
i,1 ≡ z±

i,1
and νi,1 ≡ vi,1, we obtain

φ̇i,1 = ω2
[−4ζ +

i,1 + ζ +
i+1,1 + ζ +

i−1,1 + ζ−
i+1,1 − ζ−

i−1,1 + z+
i,2 − z−

i,2

] − λνi,1

+ γ [νi+1,1 + νi−1,1 + vi,2 − 3νi,1], (C.1a)

2ζ̇−
i,1 = γ

[−3ζ−
i,1 + ζ−

i+1,1 + ζ−
i−1,1 + ζ +

i,1 − ζ +
i+1,1 − ζ +

i−1,1 + z−
i,2 + z+

i,2

]
− λ

[
ζ +
i,1 + ζ−

i,1

]
+ φi+1,1 − ψi,2 − νi+1,1 − νi−1,1 + vi,2, (C.1b)

2ζ̇ +
i,1 = γ

[−3ζ +
i,1 + ζ +

i+1,1 + ζ +
i−1,1 + ζ−

i,1 − ζ−
i+1,1 − ζ−

i−1,1 + z+
i,2 + z−

i,2

]
− λ

[
ζ +
i,1 + ζ−

i,1

]
+ 2φi,1 + φi+1,1 − ψi,2 + νi+1,1 − νi−1,1 + vi,2, (C.1c)

ν̇i,1 = ω2
[−2ζ +

i,1 + ζ +
i+1,1 + ζ−

i+1,1 + z+
i,2 − z−

i,2

] − λνi,1

+ γ [νi+1,1 + νi−1,1 + vi,2 − 3vi,2], (C.1d)

ψ̇i,2 = ω2
[−4z+

i,2 + z+
i,3 + z+

i+1,2 + z+
i−1,2 + ζ +

i,1 − z−
i,3 + z−

i+1,2 − z−
i−1,2 + ζ−

i,1

]
+ γ

[
vi+1,2 + vi,3 + vi−1,2 + νi,1 − 4vi,2

]
, (C.1e)

2ż−
i,2 = γ

[−4z−
i,2 + z−

i,3 + z−
i+1,2 + z−

i−1,2 + ζ−
i,1 + z+

i,3 − z+
i+1,2 − z+

i−1,2 + ζ +
i,1

]
+ ψi+1,2 − ψi,3 + vi,3 − vi+1,2 − vi−1,2 + νi,1, (C.1f )

2ż+
i,2 = γ

[−4z+
i,2 + z+

i,3 + z+
i+1,2 + z+

i−1,2 + ζ +
i,1 + z−

i,3 − z−
i+1,2 − z−

i−1,2 + ζ−
i,1

]
+ 2ψi,2 − ψi+1,2 − ψi,3 + vi,3 + vi+1,2 − vi−1,2 − νi,1, (C.1g)

v̇i,2 = ω2
[−2z+

i,2 + z+
i,3 + z+

i+1,2 − z−
i,3 + z−

i+1,2

]
+ γ [vi+1,2 + vi,3 + vi−1,2 + νi,1 − 4vi,2]. (C.1h)

In the continuum limit, the column index 1 corresponds to y = −1. As a result, (33)
becomes

mi+�i,1+�j = m(x + f ε,−1 + ε2(−f + s)), (C.2)
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with the shift functions f and s defined as before. Using this and proceeding as in
appendix A, the dynamics at y = −1 for fixed BC is described by the following set of
partial differential equations:

φ̇ = ω2(z+ − z− − 2ζ +) − λν − γ (ν − v) + ε
[−ω2z+

x − γ vx

]
, (C.3a)

2ζ̇− = γ (z+ + z− − ζ + − ζ−) − λ(ζ + + ζ−) − ψ + φ − 2ν + v − ε
[
γ z+

x − vx

]
, (C.3b)

2ζ̇ + = γ (z+ + z− − ζ + − ζ−) − λ(ζ + + ζ−) − ψ + φ + v + ε
[−γ z+

x + 2νx − vx

]
, (C.3c)

ν̇ = ω2(z+ − z− − ζ + + ζ−) − λν − γ (ν − v) + ε
[
ω2

(
ζ +
x − z+

x

) − γ vx

]
, (C.3d)

ψ̇ = ω2(−z+ − z− + ζ + + ζ−) + γ (ν − v) + 4εω2z−
x + 2ε2

[
ω2z+

xx + γ vxx

]
, (C.3e)

2ż− = γ (−z+ − z− + ζ + + ζ−) + ν − v + 2εψx, (C.3f )

2ż+ = γ (−z+ − z− + ζ + + ζ−) − ν + v + 2ε2
[
γ z+

xx + 2vy

]
, (C.3g)

v̇ = γ (ν − v) + 2εω2z−
x + ε2

[
ω2

(
z+
xx + 2z+

y

)
+ 2γ vxx

]
. (C.3h)

C.2. Free boundary conditions: y = −1

We start by recalling that free BC are defined by setting �q1 = �qN+1 = 0. This means
that in this case, the domain of the phase variables is i ∈ [2, N ] for �qi and i ∈ [1, N]
for pi. Consequently, while zi>1,1 is well defined, its symmetric component z1,i is not, thus
restricting the symmetrization of the covariance z (28). At variance with the case of fixed BC,
here it is necessary to consider non-symmetrizable terms. In analogy to the previous section,
we distinguish boundary covariances from their bulk counterparts by defining νi,1 ≡ vi,1 and
ζi,1 ≡ zi,1, recalling that ζi,1 is non-symmetrizable. Moreover, note that for free BC, ψ has no
boundary component, as the dynamics of ψi,2 corresponds to that in the bulk (see (21)).

By transforming the set of difference equations (21)–(23) into the covariance variables of
section 2.3 and restricting to i ∈ [4, N − 1], we obtain

ψ̇i,2 = ω2[−4z+
i,2 + z+

i,3 + z+
i+1,2 + z+

i−1,2 − z−
i,3 + z−

i+1,2 − z−
i−1,2 + ζi,1

]
+ γ [vi+1,2 + vi,3 + vi−1,2 + νi,1 − 4vi,2], (C.4a)

2ż−
i,2 = γ

[−4z−
i,2 + z−

i,3 + z−
i+1,2 + z−

i−1,2 + z+
i,3 − z+

i+1,2 − z+
i−1,2 + ζi,1

]
+ ψi+1,2 − ψi,3 + vi,3 − vi+1,2 − vi−1,2 + νi,1, (C.4b)

2ż+
i,2 = γ

[−4z+
i,2 + z+

i,3 + z+
i+1,2 + z+

i−1,2 + z−
i,3 − z−

i+1,2 − z−
i−1,2 + ζi,1

]
+ 2ψi,2 − ψi+1,2 − ψi,3 + vi,3 + vi+1,2 − vi−1,2 − νi,1, (C.4c)

v̇i,2 = ω2
[−2z+

i,2 + z+
i,3 + z+

i+1,2 − z−
i,3 + z−

i+1,2

]
+ γ [vi+1,2 + vi,3 + vi−1,2 + νi,1 − 4vi,2]. (C.4d)

ζ̇i,1 = γ
[
z+
i,2 + z−

i,2 − ζi,1
] − λζi,1 − ψi,2 + νi,1 − νi−1,1 + vi,2, (C.4e)

ν̇i,1 = ω2
[
ζi+1,1 − ζi,1 + z+

i,2 − z−
i,2

] − λνi,1 + γ [νi+1,1 + νi−1,1 + vi,2 + −3νi,1]. (C.4f )

Furthermore, using (C.2), we obtain the continuous version of the equations above.
Differentiating these latter equations and keeping terms up to O(ε2), we obtain the following
set of partial differential equations:

ψ̇ = ω2(−z− + ζ − z+) + γ (ν − v) + 4εω2z−
x + 2ε2

[
ω2z+

xx + γ vxx

]
, (C.5a)
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2ż− = γ (−z− + ζ − z+) + ν − v + 2εψx, (C.5b)

2ż+ = γ (−z− + ζ − z+) − ν + v + 2ε2
(
ω2z+

xx + 2vy

)
, (C.5c)

v̇ = γ (ν − v) + 2εω2z−
x + ε2

[
ω2

(
z+
xx + 2z+

y

)
+ 2γ vxx

]
, (C.5d)

ζ̇ = −γ (−z− + ζ − z+) − λζ + v − ψ + ε
[−γ

(
z+
x + z−

x

)
+ νx − vx + ψx

]
, (C.5e)

ν̇ = ω2(z+ − z−) − γ (ν − v) − λν + ε
[
ω2

(
z−
x + ζx − z+

x

) − γ vx

]
. (C.5f )

We remark that the covariance’s equations at y = −1 for the diagonal terms, namely those
obtained for i = 1 and i = 2, yield the same solution to leading order, with the additional
constraint νi,1 = T+.

References

[1] Chang C W et al 2008 Breakdown of Fourier’s law in nanotube thermal conductors Phys. Rev. Lett. 101 075903
[2] Rieder Z, Lebowitz J L and Lieb E 1967 Properties of a harmonic crystal in a stationary nonequilibrium state

J. Math. Phys. 8 1073
[3] Fermi E, Pasta J and Ulam S 1965 Studies of nonlinear problems Collected Papers of Enrico Fermi vol 2,
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